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We investigate the polynomials Pn , Qm , and Rs , having degrees n, m, and s,
respectively, with Pn monic, that solve the approximation problem

Enms(x) :=Pn(x) e&2x+Qm(x) e&x+Rs(x)

=O(xn+m+s+2) as x � 0.

We give a connection between the coefficients of each of the polynomials Pn , Qm ,
and Rs and certain hypergeometric functions, which leads to a simple expression for
Qm in the case n=s. The approximate location of the zeros of Qm , when n>>m and
n=s, are deduced from the zeros of the classical Hermite polynomial. Contour
integral representations of Pn , Qm , Rs , and Enms are given and, using saddle point
methods, we derive the exact asymptotics of Pn , Qm , and Rs as n, m, and s tend
to infinity through certain ray sequences. We also discuss aspects of the more com-
plicated uniform asymptotic methods for obtaining insight into the zero distribu-
tion of the polynomials, and we give an example showing the zeros of the polyno-
mials Pn , Qm , and Rs for the case n=s=40, m=45. � 1998 Academic Press

1. INTRODUCTION

Hermite�Pade� approximation to the exponential function was intro-
duced by Hermite [6] who considered expressions of the form

pk(x) eskx+ pk&1(x) esk&1x+ } } } + p1(x) es1x=O(xh) as x � 0, (1.1)
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where p1 , ..., pk are polynomials of specified degrees, chosen so that h is as
large as possible. Hermite's investigation of expressions of type (1.1) was
motivated by problems arising in number theory and led to his proof of the
transcendence of e. The formal theory of the two types of Hermite�Pade�
polynomials that arise from expressions of type (1.1) was developed by
Mahler (cf. Mahler [7]) and has yielded many successful applications to
number theory on the one hand and approximation theory on the other.
Excellent historical surveys on the development and applications of
Hermite�Pade� polynomial theory and further references can be found in
Aptekarev and Stahl [2] and de Bruin [4].

Included in expressions of the type (1.1) is the ordinary Pade� approxima-
tion problem for the exponential function, namely, given any positive
integers m and n, find polynomials P� n and Q� m with deg(P� n)�n,
deg(Q� m)�m, Q� m �0, such that

E� mn(x) :=Q� m(x) e&x+P� m(x)=O(xm+n+1) as x � 0. (1.2)

A solution to this problem always exists and the polynomials P� n and Q� m

(which are unique up to normalization) have been thoroughly investigated
by Saff and Varga [9], who obtained, inter alia, the distribution of the
zeros of P� n and Q� m , as well as those of the remainder term E� mn .

In this paper, we investigate a number of properties of the polynomials
Pn , Qm , and Rs that arise from the solution of the quadratic Hermite�Pade�
Type I approximation problem, which may be formulated as follows. Given
arbitrary positive integers n, m, and s, find polynomials Pn , Qm , and Rs ,
with Pn monic, such that

Enms(x) :=Pn(x) e&2x+Qm(x) e&x+Rs(x)

=O(xn+m+s+2) as x � 0. (1.3)

The explicit formulae for these (unique) polynomials are known; in the
super-diagonal case n=m=s, they were obtained by Borwein [3] and for
arbitrary n, m, and s # N, they can be found in Driver [5].

We organize the paper as follows. In Section 2, we prove and exploit a
connection between the coefficients of the polynomials Pn , Qm , and Rs and
certain hypergeometric functions. For the case n=s, m # N arbitrary, a
simple closed form for Qm is given, as well as the approximate location of
the zeros of Qm when n=s and n>>m. Section 3 contains contour integral
representations of Pn , Qm , and Rs and we apply saddle point methods to
obtain the asymptotic behaviour as n � � of Pn , Qm , and Rs where mt:n
and st;n. In Section 4, we discuss aspects of the more complicated
uniform asymptotic methods for obtaining insight into the zero distribution
of the polynomials Pn , Qm , and Rs . In addition, we present more details
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on this point by showing a picture of the zero distribution of the polyno-
mials for the case n=s=40, m=45.

At several places we use properties of special functions and orthogonal
polynomials for which we refer to Temme [10]; all information of this kind
can also be found in, for instance, Abramowitz and Stegun [1].

2. THE POLYNOMIALS PN , QM , AND RS

The polynomials Pn , Qm , and Rs with deg(Pn)=n, deg(Qm)=m,
deg(Rs)=s, Pn monic, that satisfy (1.3) are given by (cf. Driver [5, Eqs.
(2.9), (2.12), (2.19)])

Pn(x)=n ! :
n

j=0

p j x j

j !
, (2.1)

where

pj= :
n& j

k=0
\m+n&k& j

m +\s+k
s + 2&k for j=0, ..., n; (2.2)

Qm(x)=&2s+1n ! :
m

j=0

qj x j

j !
, (2.3)

where

qj= :
m& j

k=0

(&1)k+ j \m+n&k& j
n +\s+k

s + for j=0, ..., m; (2.4)

Rs(x)=2s&nn !(&1)m :
s

j=0

rj x j

j !
, (2.5)

where

rj= :
s& j

k=0

(&1) j \m+s&k& j
m +\n+k

n + 2&k for j=0, ..., s. (2.6)

We observe that each of the polynomials Pn , Qm , and Rs depends on all
three positive integers n, m, and s and the subscript merely denotes the
degree of the polynomial in each case. Writing Pn(x)=P(n, m, s; x),
Qm(x)=Q(n, m, s; x), and Rs(x)=R(n, m, s; x), the following symmetries
follow immediately from (2.1)�(2.6),

P(s, m, n; &x)=
(&1)m 2n&ss !

n !
R(n, m, s; x) (2.7)
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and

Q(s, m, n; &x)=
(&1)m 2n&ss !

n !
Q(n, m, s; x). (2.8)

It is evident from (2.7) that any information regarding the polynomial Pn

immediately yields corresponding results about the polynomial Rs , whereas
(2.8) tells us that when n=s, Qm is an even (odd) polynomial in x when
m is even (odd).

Our first result establishes a connection between the coefficients if Pn ,
Qm , and Rs and certain 2 F1 hypergeometric functions. We recall the defini-
tion of the Gauss function

2F1(a, b; c; z) := :
�

k=0

(a)k (b)k zk

(c)k k !
, (2.9)

where

(:)k :={:(:+1) } } } (:+k&1)=1(:+k)�1(:),
1,

if k�1,
if :{0, k=0.

(2.10)

If t # N, it follows immediately from (2.10) that

(&t)k={(&1)k t !�(t&k)!
0

for 0�k�t,
for k>t.

(2.11)

Therefore, the hypergeometric series 2F1(&t, b; c; z), t # N, is a polynomial
of degree t in z and, from (2.10) and (2.11), we have for b, c # N,

2F1(&t, b+1; c+1; z)= :
t

k=0
\ t

k+
(b+k) ! c !
b ! (c+k)!

(&z)k. (2.12)

Theorem 2.1. Let pj , qj , and rj be given by (2.2), (2.4), and (2.6),
respectively. Then

pj=\n+m& j
m + 2F1( j&n, s+1; j&n&m; 1

2),

j=0, 1, ..., n, (2.13a)

qj=(&1) j \n+m& j
n + 2F1( j&m, s+1; j&n&m; &1),

j=0, 1, ..., m, (2.14a)

rj=(&1) j \s+m& j
m + 2F1( j&s, n+1; j&s&m; 1

2),

j=0, 1, ..., s, (2.15a)
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Another way of writing this is

pj=\n+m+s+1& j
n& j + 2F1( j&n, s+1; m+s+2; 1

2),

j=0, 1, ..., n, (2.13b)

qj=(&1) j \n+m+s+1& j
m& j + 2 F1( j&m, s+1; n+s+2; 2),

j=0, 1, ..., m, (2.14b)

r j=(&1) j \n+m+s+1& j
s& j + 2 F1( j&s, n+1; n+m+2; 1

2),

j=0, 1, ..., s, (2.15b)

As an immediate consequence of Theorem 2.1, we can express the coef-
ficients pj , qj , and rj as the constant terms in appropriate Jacobi polyno-
mials.

Corollary 2.1. For any n, m, s # N, if P (:, ;)
k denotes the Jacobi polyno-

mial of degree k with parameters : and ;, then

pj=P (m+s+1, j&m&n&1)
n& j (0), (2.16)

qj=2m& j (&1)m P ( j&m&n&1, j&m&s&1)
m& j (0), (2.17)

rj=(&1) j P (m+n+1, j&m&s&1)
s& j (0). (2.18)

Unfortunately, the value of the constant term in the Jacobi polynomial
P(:, ;)

k (x) is not known in general. However, when n=s, the coefficients q j ,
and therefore the polynomial Qm , can be expressed in a simple form.

Theorem 2.2. Let qj and Qm be given by (2.14a) and (2.3), respectively.
Suppose that

n=s # N and m # N is arbitrary. (2.19)

(a) For j=0, ..., m, we have

qj={
0 for m& j odd,

(2.20)
(&1) j \n+(m& j)�2

n + for m& j even.
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(b) We have

Qm(x)=(&1)m+1 2n+1 :
wm�2x

k=0

(n+k)!
k !

xm&2k

(m&2k)!
, (2.21)

where w px is the integer satisfying w px�p<w px+1, with p # R.

(c) For m even, m=2p, p # N, we have

Qm(x)=Q2p(x)&2n+1 (n+ p)!
p ! 1F2 \&p; &n& p,

1
2

;
x2

4 + , (2.22)

while, for m odd, m=2p+1, p # N, we have

Qm(x)=Q2p+1(x)=2n+1 (n+ p)!
p !

x1F2 \& p; &n& p,
3
2

;
x2

4 + . (2.23)

Remarks 2.1. (1) The hypergeometric function 1F2(a; b, c; z) that
occurs in (2.22) and (2.23) is defined by

1F2(a; b, c; z) := :
�

k=0

(a)k zk

(b)k (c)k k!
, (2.24)

where (:)k is defined in (2.10). Using (2.11), we see that the F-functions in
(2.22) and (2.23) are each polynomials of degree p in the variable x2�4. The
even (odd) nature of Qm(x) when m is even (odd) and n=s observed in
(2.8) is therefore also apparent from (2.22) and (2.23).

(2) The assumption (2.19) that n=s is restrictive. However, it can be
shown that, for general n, m, s # N, alternate coefficients of Qm involve a
factor (n&s) and are zero only when (2.19) holds. No simple closed form
of Qm seems possible in the general case.

Some information regarding the approximate location of the zeros of the
polynomial Qm(x) when n is much larger than m and n=s can be obtained
from (2.21) by comparing Qm(x) with the Hermite polynomial

Hm(x)=m ! :
wm�2x

k=0

(&1)k (2x)m&2k

k! (m&2k)!
. (2.25)

We have the following corollary.

Corollary 2.2. With the assumptions of Theorem 2.2, when n>>m,

Qm(x)=&2n+1 n !
m!

imnm�2 _Hm \1
2

ix�- n++O(1�n)& , (2.26)
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and hence the zeros of Qm(x) lie approximately in the interval (&2i - n(m+1),
2i- n(m+1)) on the imaginary axis.

Table 2.1 shows the zeros of Q10 on the positive imaginary axis with
n=s=20, compared with the approximations obtained from the zeros of
the Hermite polynomial.

The connection between the coefficients of the polynomials Pn (and Rs)
and the hypergeometric functions given by (2.13a) (and (2.15a)), does not
seem to provide the same degree of simplification obtained for the coef-
ficients of Qm , perhaps because the p j 's are intrinsically more complicated.
However, it is possible to obtain exact closed expressions for the first two
coefficients p0 and p1 , as well as the recurrence relation satisfied by the pj 's.
We have the following result:

Theorem 2.3. Suppose that pj is given by (2.13a) for j=0, ..., n and that
n=s while m # N is arbitrary. For any m, n # N, let

D(m, n) :=(m+2n)(m+2n&2) } } } (m+2). (2.27)

Then

p0=D(m, n)�n!, (2.28)

p1=[D(m, n)&D(m&1, n)]�n !, (2.29)

and for j=2, ..., n, we have

pj=
2

(2n+m& j+2) {\2n+m+3&
3j
2 + pj&1&(n& j&2) pj&2 = . (2.30)

Remarks 2.2. (1) When m=n=s, we see from (2.28) that
p0=3m(3m&2) } } } (m+2)�m ! for all m # N. This gives an exact expression

TABLE 2.1

Zeros on the Positive Imaginary Axis of Q10 , with
n=s=20, Compared with the Approximations

Obtained from (2.26)

Zeros of Q10 Approximations Relative errors

3.44274827i 3.06700270i 0.12
10.32157031i 9.27172912i 0.11
17.17259049i 15.71225622i 0.09
23.93313689i 22.65344077i 0.06
30.06525844i 30.73394148i 0.02
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in place of the asymptotic p0 t3m(3m&3) } } } (m+2)�m ! obtained in
Borwein [3], in particular Proposition 3(a) with x=0.

(2) For m even, say m=2p, we have from (2.27) and (2.28) that

p0=2n \n+ p
n + .

2.1. Proofs of the Theorems and Corollaries

Proof of Theorem 2.1. From (2.2) with n& j=t, (2.11) and (2.24) we
have, for 0�t�n,

pj= :
t

k=0

(m+t&k)! (s+k)!
m ! s ! k ! (t&k)!

2&k=
(m+t)!

m ! t !
:
t

k=0

(&t)k (s+1)k

(&m&t)k k !
2&k, (2.31)

from which (2.13a) immediately follows. The identities (2.14a) and (2.15a)
follow from the same method. In general the function 2F1(a, b; c; z) is not
defined if c=0, &1, &2, ..., but in (2.13a)�(2.15a) the a-parameter equals
also a non-positive integer value, with |a|�|c|. In that case the F-function
is well-defined. We use a well-known transformation of the F-function to
obtain (2.13b)�(2.15b), where the c-parameter is a positive integer and
which are more convenient representations. We use (cf. Temme [10,
p. 113])

2F1(a, b; c; z)=
1(c) 1(c&a&b)
1(c&a) 1(c&b) 2F1(a, b; a+b&c+1; 1&z),

a=0, &1, &2, ... . (2.32)

Applying this formula to (2.13a)�(2.15a) we observe that all arguments in
the gamma functions in front of the F-function in (2.32) become equal to
non-positive integers. Hence some care is needed in applying the transfor-
mation. To verify (2.13a) � (2.13b) we use the property

1(z)
1(z&k)

=(&1)k 1(1&z)
1(k+1&z)

, k=0, 1, 2, ...

and introduce a small parameter =. That is, we write using a= j&n,
b=s+1, c= j&n&m,

1(c) 1(c&a&b)
1(c&a) 1(c&b)

= lim
= � 0

1(c+=) 1(c+=&a&b)
1(c+=&a) 1(c+=&b)

=
1(m+1) 1(n+m+s& j+1)
1(n+m& j+1) 1(m+s+2)

.
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This gives the result in (2.13b). The results for qj and rj follow in a similar
way. K

Proof of Corollary 2.1. We have (cf. Temme [10, p. 151])

P (:, ;)
n (x)=\n+:

n + 2F1 \&n, :+;+n+1; :+1;
1&x

2 + . (2.33)

It follows from (2.13b) and (2.33) with :=m+s+1, ;= j&m&n&1, and
x= 1

2 , that

pj=P (m+s+1, j&m&n&1)
n& j (0).

Then (2.16) follows in the same manner. The relation for qj follows from
applying (cf. Temme [10, p. 110])

2F1(a, b; c; z)=(1&z)&a
2 F1 \a, c&b; c;

z
z&1+ , (2.34)

which transforms the F-function with argument &1 into one with argu-
ment 1

2 . A few manipulations with binomial coefficients and gamma func-
tions (again with negative integer arguments) give the proof of (2.17). K

Proof of Theorem 2.2. (a) From (2.17) with n=s, we have, for
j=0, ..., m,

qj=(&1)m 2m& jP ( j&m&s&1, j&m&s&1)
m& j (0).

The parameters in the Jacobi polynomial are equal, and hence the Jacobi
polynomial reduces to a Gegenbauer polynomial (cf. Temme [10, p. 152]),

C #
k(x)=

(2#)k

(#+1�2)k
P (#&1�2, #&1�2)

k (x),

which vanishes at x=0 when k is odd. For (m& j) even, say m& j=2k, we
use

C #
2k(0)=

(&1)k

1(#)
1(k+#)

k !
,

which gives with #=&n&2k& 1
2 , after using standard properties of the

gamma function,

qj=(&1) j \n+k
n + .
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In particular we have used (2.11) and the duplication formula

- ? 1(2z)=22z&11(z) 1(z+ 1
2). (2.35)

(b) From (2.3) with n=s, and (2.20), we have

Qm(x)=&2n+1n! :
m

j=0

qjx j

j !
,

where

qj={
0 for m& j odd,

(&1) j \n+(m& j)�2
n + for m& j even.

Therefore, for m even, say m=2p, it follows that

Qm(x)=Q2p(x)=&2n+1n ! :
p

k=0
\n+ p&k

n + x2k

(2k)!

=&2n+1 :
p

k=0

(n+ p&k)!
( p&k)!

x2k

(2k)!
.

Reversing the order of summation yields that, for m even,

Qm(x)=&2n+1 :
m�2

k=0

(n+k)!
k !

xm&2k

(m&2k)!
. (2.36)

Similarly, for m odd,

Qm(x)=2n+1 :
(m&1)�2

k=0

(n+k)!
k !

xm&2k

(m&2k)!
, (2.37)

and combining (2.36) and (2.37), we obtain (2.21).

(c) From the definition (2.24), we have

1F2 \&p; &n& p,
1
2

;
x2

4 += :
�

k=0

(&p)k

(&n& p)k (1�2)k

x2k

k ! 22k . (2.38)

Using (2.10) and (2.11), a simple calculation shows that

(&p)k

(&n& p)k (1�2)k k ! 22k={
p! (n+ p&k)!

(n+ p)! ( p&k)! (2k)!
, 0�k�p,

(2.39)

0, k>p.
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Therefore, from (2.38) and (2.39), we obtain

1F2 \&p; &n& p,
1
2

;
x2

4 +=
p !

(n+ p)!
:
p

k=0

(n+ p&k)! x2k

( p&k)! (2k)!
, (2.40)

and (2.22) follows from (2.43) and (2.40). Similarly,

1F2 \&p; &n& p,
3
2

;
x2

4 +=
p !

(n+ p)!
:
p

k=0

(n+ p&k)!
( p&k)!

x2k

(2k+1)!
, (2.41)

and (2.23) follows from (2.45) and (2.41). K

Proof of Corollary 2.2. For each k, k=0, ..., wm�2x, if n is large com-
pared with m, we have (cf. Temme [10, p. 67])

(n+k)!
n !

=nk _1+
k(k+1)

2n
+O(n&2)& .

Therefore, for n>>m, it follows from (2.21) that

Qm(x)=(&1)m+1 2n+1n ! nm�2 _ :
wm�2x

k=0

nk&m�2xm&2k

k ! (m&2k)!
+O(1�n)& . (2.42)

Comparing (2.42) with the Hermite polynomial Hm(x) given in (2.25), we
see that, for n>>m,

Qm(x)=&2n+1 n !
m!

imnm�2 _Hm \1
2

ix�- n++O(1�n)& . (2.43)

Since it is well known (cf. Temme [10, p. 168]) that the zeros of the
Hermite polynomial Hm(x) lie in the real interval (&- 2m+1, - 2m+1),
we deduce from (2.43) that the zeros of Qm(x) for n>>m lie approximately
in the interval (&2 - n(m+1) i, 2 - n(m+1) i) on the imaginary axis. K

Proof of Theorem 2.3. Putting n=s and j=0 in (2.13b) we have

p0=\m+2n+1
n + 2F1(&n, n+1; m+n+2; 1

2). (2.44)

Applying (2.34), we obtain

p0=\m+2n+1
n + 2&n

2F1(&n, m+1; m+n+2; &1).
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Now, (cf. Temme [10, p. 129]),

2F1(a, b; b&a+1; &1)=- ?
2&b1(b&a+1)

1(1+b�2&a) 1(1�2+b�2)
.

(2.45)

Therefore, from (2.44) and (2.45) with a=&n, b=m+1, and from the
duplication formula (2.35), it follows that

p0=
2n1(n+m�2+1)

n ! 1(m�2+1)
=

1
n !

D(m, n).

This yields (2.28). Next, putting n=s and j=1 in (2.13a), we obtain

p1=
(m+2n)!

(m+n+1)! (n&1)! 2 F1 \&n+1, n+1; m+n+2;
1
2+ . (2.46)

Denoting 2F1(a, b; c; z) by 2F1 ; 2F1(a+1, b; c; z) by 2F1(a+), and so on,
we have the contiguous hypergeometric function relation (cf. Temme [10,
p. 122])

(b&a)(1&z) 2F1=(c&a) 2F1(a&)&(c&b) 2F1(b&). (2.47)

With a=&n+1, b=n+1, c=m+n+2, z= 1
2 , (2.47) becomes

n2F1(&n+1, n+1; m+n+2; 1
2)

=(m+2n+1) 2F1(&n, n+1; m+n+2; 1
2)

&(m+1) 2F1(&n+1, n; m+n+2; 1
2). (2.48)

Applying (2.34) on the final F-function in (2.48) and (2.45) we obtain

2F1 \&n+1, n; m+n+2;
1
2+=

(m+n+1)!
(m+1)! D(m, n)

. (2.49)

From (2.46), (2.48), (2.49), and (2.44), it follows that

n! (m+n+1)!
(m+2n)!

p1=
n ! (m+n+1)!

(m+2n)!
p0&

(m+n+1)!
m! D(m, n)

,

whence we obtain (2.29). Finally, from (2.13a) with n=s, we have for
j=0, ..., n,

pj=
(m+2n& j+1)!

(m+n+1)! (n& j)! 2F1 \&n+ j, n+1; m+n+2;
1
2+ .
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Therefore, using the contiguous function relation (cf. Temme [10, p. 122])

a(1&z) 2F1(a+)=[2a&c+(b&a) z] 2F1+(c&a) 2F1(a&),

we obtain (2.30). K

3. CONTOUR INTEGRAL REPRESENTATIONS AND
ASYMPTOTICS

The polynomials Pn , Qn , and Rs that satisfy (1.3), and are given by
(2.1)�(2.6), admit simple contour integral representations. In the super-
diagonal case n=m=s, these representations were already know to
Mahler (cf. Mahler [7]).

Theorem 3.1. Let n, m, and s be arbitrary positive integers and let C be
a circle, centre at the origin, radius r # (0, 1). Let Pn(x), Qm(x), and Rs(x)
be the polynomials given by (2.1), (2.3), and (2.5), respectively. Then

Pn(x)=
2s+1(&1)n n!

2?i �
C

e&xv

vn+1(v+1)m+1 (v+2)s+1 dv, (3.1)

Qm(x)=
2s+1(&1)m+1 n !

2?i �
C

exv

vm+1(v+1)n+1 (1&v)s+1 dv, (3.2)

Rs(x)=
2s+1(&1)m+s n !

2?i �
C

exv

vs+1(v+1)m+1 (v+2)n+1 dv. (3.3)

Proof. Expanding e\xv in its Maclaurin series and using Cauchy's
integral theorem and Leibniz' rule, a comparison of the coefficients of
powers of x on the right hand sides of (3.1), (3.2), and (3.3) with (2.2),
(2.4), and (2.6), respectively, proves the result. K

In order to analyze the asymptotic behaviour of the polynomials Pn(x),
Qm(x), and Rs(x) given by (3.1), (3.2), and (3.3), respectively, we let

N=n+1, M=m+1, S=s+1, (3.4)

and assume that all these parameters are large. We write

M=:N and S=;N, (3.5)

where : and ; are real, positive constants. We write (3.1) in the form

Pn(x)=
2s+1(&1)n n !

2?i �
C

e&Np̂(v)e&xv dv, (3.6)
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where

p̂(v) :=ln[v(v+1): (v+2);]. (3.7)

Applying the saddle point method (cf. Olver [8, Sect. 7.3, Theorem 7.1]) to
the integral in (3.6), a simple calculation shows that for all real, positive
values of : and ;, p̂(v) has derivative equal to zero at a point, say v0 , lying
in (&1, 0), and at another point to the left of &1. The contour C can be
chosen to run through v0 . Moreover, p̂"(v0){0 and, in fact, p̂"(v0) is real
and negative for all :, ;>0. Therefore, as N � �, we deduce from (3.6)
that (cf. Olver [8, Theorem 7.1])

Pn(x)t
2s+1(&1)n n !

2?i
2e&Np̂(v0) �?

N
e&xv0

(2p̂"(v0))1�2 , (3.8)

where if p̂"(v0)=&k2
0 say, k0>0, we choose the branch of

(2p̂"(v0))1�2=i - 2 k0 , in accordance with (cf. Olver [8, Eq. 7.07]). In
Theorem 3.2 more details are given for a special case.

Similarly, for Qm(x), we have from (3.2)

Qm(x)=
2s+1(&1)m+1 n!

2?i �
C

e&Nq̂(v)exv dv, (3.9)

where

q̂(v) :=ln[v:(v+1)(1&v) ;]. (3.10)

In this case we can choose C to run through two saddle points: q̂(v) has
derivative equal to zero at two distinct points, v1 # (&1, 0) and v2 # (0, 1)
for all :, ;>0.

The asymptotic formulae for Pn , Qm , and Rs are rather cumbersome
arithmetically for arbitrary :, ;>0. We shall, therefore, restrict ourselves
to the (rather natural) case when ;=1 in (3.5), although the method
works for all :, ;>0.

Theorem 3.2. Let Pn(x), Qm(x), and Rs(x) be given by (3.1), (3.2), and
(3.3), respectively, and assume that (3.5) holds with ;=1. Set

\ :=� :
:+2

,
(3.11)

Dn, : :=\1&:(2n+:n)(2n+:n&2) } } } (:n+2).
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Then, as n � �, we have

Pn(x)tDn, :ex(1&\), (3.12)

Qm(x)t(&1)m+1 Dn, :[ex\+(&1)m e&x\], (3.13)

Rs(x)t(&1)m Dn, :e&x(1&\). (3.14)

The asymptotics are uniform with respect to x on compact subsets of C.

Remark 3.1. When :=1, we see from (3.11) that Dn, 1=3n(3n&2) } } }
(n+2), while \=1�- 3. The asymptotics (3.12), (3.13), and (3.14) then
agree exactly with the asymptotics for the polynomials in the diagonal case
(cf. Borwein 53, Proposition 3]), obtained by a different method.

Proof. Putting ;=1 in (3.7) and differentiating with respect to v, we see
that

p̂$(v)=0 when v=&1\\.

Setting

v0 :=&1+\, (3.15)

it follows from (3.7) that

exp[&Np̂(v0)]=(&1)N \:+2
2 +

N

\:+2
: +

M�2

(3.16)

and

2p̂"(v0)=&2(:+2)2. (3.17)

Therefore, from (3.8), as N � �, recalling that N=n+1, we have by
(3.16) and (3.17) that

Pn(x)t
2n+1(&1)n n ! 2(&1)n+1 (:+2)n+1

2?i2n+1i - 2 (:+2)
\&:(n+1) � ?

n+1
ex(1&\)

=
n !

- 2?

(:+2)n

- n+1
\&:(n+1)ex(1&\). (3.18)

Now, from (3.11), we have

Dn, :=\1&: 2n1(n+:�2+1)
1(:�2+1)

,
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and applying Stirling's formula, it follows that as n � �,

Dn, : t
n !

- 2?

(:+2)n

- n+1
\&:(n+1). (3.19)

We deduce (3.12) from (3.18) and (3.19). Turning to the polynomial
Qm(x), with ;=1, set

q̂(v) :=ln[v:(1&v2)]. (3.20)

Then q̂$(v)=0 when v=\\, so that the integral in (3.9) has two (simple)
saddle points inside C at the points on the real axis given by

v1 :=\, v2 :=&\. (3.21)

Moreover, from (3.20), we have

q̂"(vj)=&(:+2)2, j=1, 2, (3.22)

while

exp(&Nq̂(v1))=\:+2
: +

M�2

\:+2
2 +

N

(3.23)

and

exp(&Nq̂(v2))=(&1)M \:+2
: +

M�2

\:+2
2 +

N

. (3.24)

We must choose the branches of (2q̂"(v))1�2 at v=v1 and v=v2 in accord-
ance with Eq. (7.07) of Olver [8], namely,

(2q̂"(v1))1�2=&i - 2 (:+2), (3.25)

(2q̂"(v2))1�2=i - 2 (:+2). (3.26)

Then, from (3.9) together with (3.23), (3.24), (3.25), and (3.26), we deduce
that as N(or n) � �,

Qm(x)t
(&1)M n ! (:+2)n \&M

- 2?(n+1)
[ex\+(&1)m e&x\]

t(&1)m Dn, :[ex\+(&1)m e&x\], (3.27)

where, in the last line, we have used (3.19). This proves (3.13). Noting that
when ;=1, Rs(x)t(&1)m Pn(&x), the asymptotic (3.14) follows from
(3.12). The results hold uniformly with respect to x on compact subsets of
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C, because we assume that x is independent of the large parameter n (cf.
Olver's theorem mentioned in connection with (3.8)). K

The contour integrals for the polynomials Pn , Qm , Rs , and Enms can be
written in the form

Pn(x)=&
2s+1n ! ex

2?i �
C1

e&xw

(1&w)n+1 wm+1(1+w)s+1 dw, (3.28)

Qm(x)=&
2s+1n !

2?i �
C0

e&xw

(1&w)n+1 wm+1(1+w)s+1 dw, (3.29)

Rs(x)=&
2s+1n ! e&x

2?i �
C&1

e&xw

(1&w)n+1 wm+1(1+w)s+1 dw, (3.30)

Enms(x)=&
2s+1n ! e&x

2?i �
C

e&xw

(1&w)n+1 wm+1(1+w)s+1 dw, (3.31)

where Cj is a circle, centre at w= j, radius r # (0, 1), and C is a circle, cen-
tre at the origin, radius r>1. The result for the remainder Enms(x) defined
in (1.3) follows from adding up the results in (3.28)�(3.30). So, in fact, we
have the same integral representation for the quantities Pn , Qm , Rs , and
Enms , but with different contours of integration; see Fig. 3.1. Of course, all
contours can be deformed without crossing the poles.

To obtain the asymptotic behaviour of the remainder, we cannot simply
use the results in (3.12)�(3.14). Adding up these results gives

Enms(x)=Pn(x) e&2x+Qm(x) e&x+Rs(x)t0,

which does not give useful information, but is in agreement with the
approximating property of the Hermite�Pade� method. A better estimate for
Enms follows from (3.31), by taking into the account the exponential func-
tion when computing the saddle point.

FIG. 3.1. The contours for Pn , Qm , Rs , Enms for (3.28)�(3.31).
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Theorem 3.3. Let Enms(x) be defined by (3.31); assume that n, m, and s
tend to � and x=o(n+m+s). Then

Enms(x)=
(&1)m+s 2s+1n ! e&xxn+m+s+2

(n+m+s+2)!
[1+o(1)]. (3.32)

Proof. We write (3.31) in the form

Enms(x)=
(&1)n 2s+1n ! e&x

2?i |
C

e&xw

wn+m+s+3 q(w) dw, (3.33)

where

q(w)=
1

(1&1�w)n+1 (1+1�w)s+1 .

The function e&xw�wn+m+s+3 has a saddle point at w0=&(n+m+s+3)�x,
which tends to infinity, and q(w)=1+(n&s)�w+ } } } =1+o(1) in a
neighborhood of the saddle point, and in fact on a circle with radius |w0 |.
This proves the theorem. K

4. FURTHER ASYMPTOTIC ASPECTS AND ZERO DISTRIBUTION

The asymptotic estimates given in (3.11)�(3.14) and (3.32) cannot be
used to obtain detailed information on the zeros, because the zeros occur
outside compact sets as the orders n, m, s tend to infinity. A first insight
on this phenomena can be obtained from Corollary 2.2; it follows (under
the conditions given there) that the zeros of Qm are at least O(- n) and at
most O- nm). From the estimate in (3.13) of Theorem 3.2 we infer that
zeros can be expected (again, under the conditions given there) if x is
near the points ik?�\, k=\1, \2, ... if m is odd, or near i(k+ 1

2) ?�\,
k=\1, \2, ... if m is even. When n=s, (2.26) and Table 2.1 suggest that
the zeros of Qm are indeed purely imaginary. This is not true, in general,
as we discovered for the case n=s=15, m=14. In this case Qm has ten
zeros on the imaginary axis and four in the complex plane at the points
\1.684078371\29.25218473i, these four being the large zeros. See also the
example in Subsection 4.2 and Fig. 4.2 later in this section.

4.1. Some Aspects of Uniform Asymptotic Methods

As explained at the end of the previous section, the four quantities Pn ,
Qm , Rs , and Enms all have the same integral representation

| e&,(w) dw
w(1&w2)

, (4.1)
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with different contours and with

,(w)=zw+n ln(1&w)+m ln w+s ln(1+w), (4.2)

where we now write z instead of x, to underline that the argument is com-
plex. The saddle points of the integrand are the zeros of the derivative of
,. There are three saddle points defined by the cubic equation

zw3+(1+n+s) w2+(n&s&z) w&m=0 (4.3)

and the saddle points are real when z is real. When z>0 the saddle points
occur in (&�, &1), (&1, 0), and (0, 1); the saddle point contours have
the shape of a parabola, with the real w-axis as axis of symmetry, with
summits through the saddle points and with openings at Rw=+�. For
Pn and Enms one single ``parabola'' can be used, through the positive saddle
and the saddle point at the left of w=&1, respectively. For Qm two
parabolas are needed to encircle the pole at w=0. One parabola runs
through the saddle point between 0 and 1, and the other one through the
saddle point between &1 and 0; the parabolas are joined at Rw=+� to
close the loop. A similar contour can be used for Rs . When z<0 the saddle
point contours have the same pattern but with parabolas with openings at
Rw=&�.

A first idea about the location of the saddle points when z is complex can
be obtained by considering rather large and rather small values of |z|
(``small'' and ``large'' mean compared with n+m+s). When z moves along
a large circle in the complex plane, the saddle points describe small circuits
around the three poles at w=&1, 0, 1. When |z| is small, one saddle point
describes a large circuit around the three poles, and the other two saddles
describe small circuits around, say, w=\1

2 . In Fig. 4.1 we show the paths
of the saddle points when z describes a semi-circle in the upper half plane.

For certain complex values of z two or three saddle points may coincide.
It is known from uniform asymptotic (cf. Olver [8] or Wong [12]) that
Airy functions can describe the asymptotic behaviour of the integrals when
two saddle points coincide. It is also known that in the z-plane strings of
zeros arise near z-values that make the saddle points coalesce.

When n=s two saddle points coincide when z solves the equation

z4+(n2+10nm&2m2) z2+m(m+2n)3=0. (4.4)

When n=s=4m and

z2=&27m2 (4.5)
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FIG. 4.1. Trajectories of the saddle points when z describes a circular arc in the upper half
plane.

three saddle points coincide at

w=\i�- 3. (4.6)

It is possible to describe all this by replacing the phase function ,(w)
with a quartic polynomial,

,(w)= 1
4`4+ 1

2:`2+;`+#, (4.7)

which in fact is a conformal mapping of the w-plane to the `-plane, where
the three parameters :, ;, # follow from substituting the values of the three
w-saddles and at the same time the three values of the three corresponding
`-saddles, which are the zeros of

`3+:`+;=0. (4.8)

When we follow this procedure we need to investigate the Pearcy-type
functions

Fj (:, ;)=
1

2?i |Cj

e&((1�4) `4+(1�2) :`2+;`+#)f (`) d` (4.9)

along certain contours Cj in the complex plane, where :, ; are complex
constants, and (in our problem) depend on the complex parameter z and
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the non-negative integers n, m, s, and f contains the derivative dw�d` that
arises when we transform (4.1) into (4.9) by using the mapping (4.7).

4.2. An Example for the Zero Distribution

In Fig. 4.2 we give the zeros of the polynomials Pn , Qm , Rs with
n=s=40, m=25. The open dot indicates the zeros of the polynomials Pn

and Rs . Those in the left-hand plane are the zeros of Pn ; the zeros of Rs

occur in the right-hand plane. The zeros of Qm are given by black dots; 33
zeros occur on the imaginary axis, the remaining 12 zeros occur in the
neighborhood of the black squares indicated by zk , k=1, 2, 3, 4.

The four values zk solve Eq. (4.4) for the chosen values of n, m, s. For
these values of z two saddle points of ,(w) defined in (4.2) coincide, and
Airy-type asymptotic approximations can be derived for all integrals
(3.28)�(3.31). As follows from the picture, and as remarked earlier, near zk

the zeros of the polynomials and the remainder arise. The zeros of En, m, s

are not shown, because at present not enough numerical details are
available for high degree cases. The zeros of the remainder are located
along curves that start near the four points zk and run to \i�.

FIG. 4.2. The zeros of Pn , Qm , Rs with n=s=40, m=45. The black dots indicate the
Q-zeros, the open dots those of Pn (left-hand plane), and Rs (right-hand plane); for an
explanation of the role of the points zk we refer to the text of Subsection 4.2.
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